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ABSTRACT

The general purpose of the work reported here is to obtain the best
possible feasible signal processing algorithms for estimating from radar
data characteristics and trajectory parameters of bodies moving in the
air.

This report starts with 8- extensive set of numerical results showing
the effectiveness of the simplified dynamics equations evolved in approxi-
mating pertinent characteristics of trajectories calculated by the BRL
point-mass model. Next, a mathematical derivation of the optimal recursive
algorithm for filtering and smoothing radar data, formulation for which was
presented in our previous Quarterly Progress Report [2], is presented. A
technique for evaluation of recursive filtering-smot shing algorithms by
deterministic calculations is then presented. This technique will enabile
the assessment of expected random and bies errors in trajectory estimation
efficiently so as to avoid the need for a large number of simulation runs.
In closing, plans 8re described for presenting numerical results obtainead
in the final report. These will include true minimum variances in trajec-
tory parameter estimation (assuming ideslized processing), demonstration by
simulations and deterministic calculations of the effectiveness of the re-
cursive smoothing and filtering algorithms obtained.
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FOREWORD

This report describes work done from 1 November 1971 through 31 Januvary
1972 at the Moore School of Electrical Engineering, University cf Pennsylvania,
under contract number DAABO7-71-C-0212 with U. S. Army Electronics Command for
research entitled "The Estimation of Trajectories from Rader Data". The cogni-
zant technical personnel at USA ECOM are Dr. Leonard Hatkin, hesd of the Radar

Technical Area and Mr. Donald Foiani, CSTA Laboratory, Evans Area, Fort Monmouth,

N.J. 07703.
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1. INTRODUCTLON

As indicated in the previous Quarterly Progress Reports [ 1,2], this work
is concerned with the general signal processing problem of estimating charac-

teristics and trajectory parameters of & body moving in the air from noisy
radar observations.

The main thrust during this quarter has been to eveluate the simplified
dynamics equations evolved, and to complete, refine,

debug and conduct sample
runs of computer programs to do the following tasks:

a) obtain algorithms to
perform optimal recursive smoothing and filtering from simulated noisy rsedar
12 data; b) deterministic evaluation of expected filter-smoother algorithm per-

formance; and c¢) determination of idealized or minimum variance sensitivity
of trajectory parameter estimetion accuracy to radar observation errors.

The evaluation of the £irmpilified Dynamics Equations is presented in Sec-
tion 2 to follow. Revised values for universal drag and drift curves are pre-
sented, followed by a set of runs of & wide variety of projectile trajectories
showing resultant backtracking errors due to the simplificd dynamics.
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The detailed formulation required to perform optimal recursive smoothing
and filtering of noisy radar data was presented in Section 4 of ref. 2. The

required mathematical derivation of the algorithm is included here in Section
3 below. Details of the simulation program, performance evaluation for track-

ing and parameter estimation of trajectories will be included in the final re-
port.
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1n Section b is presented the derivation of a deterministic method for
3 evaluation of expected filter-smoother algorithm performance. This technique
A can account for bias errors &s well as random errors in radar observations,

W
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. for both the optimal filter-smoother algorithm described in Section 3 and also §
,§ arbitrary non-optimel recursive algorithms that may be employed. g
% The program for the idealized sensitivity study has been debugged and %
b results are being prepared for the final report. These results will be use- i
: ful in assessing the efficiency of the recursive algorithms developed as well z
3 as providing tradeoffs as to significance of different types of errors. g
E
= i
E
E
4 2
23

%

VLR PR oy 18 N i 17 1805 1

ot
&
Eol
2
3
3
T
3
1',
%
-
2
2
£
3
g
b
%
&




=1
4
B
=
S
i
4
24
E-

b

st

s

Ban WY eaRy w4

¢
i
£
i
3
£
!
i
£
¥
i3
H
|
£
=

2.0 EVALUATION OF SIMPLIFIED DYNAMICS EQUATIONS

The development of simplified dynamics equations, incorporating approximae-
tions to drag and drift accelerations, was presented in retf'. 2, Section 2. The
work presented here consists of & refined set of numericel constants needed for

the approxrimations used plus an extensive set of evaluation results for the four
different projectiles considered.

The refined set of approximetion constants is presented in Table 1. Three

sets of polynomial coefficients are given defining “"universal" curves for drag,
drift, and spin.

Evaluations of the Simplified Dynamics approximations are oresented in
Tables 2a, b, ¢, and d for the 105mm, 155mm, 175mm, and 8-inch -rojectiles,
respectively. In each case results are shown for a variety of charges and
quadrant elevation angles. Computations of backtracking accuracy are per-
formed for reversal times given in multiples of ten seconds.

The principal factors affecting the errors are (i) time of reversal, corr-
espunding in the use of the system to the time at which thr state vector esti~
mate is made; (ii) quadrant elevation, and (iii) projectile typa2.

Item (ii) is a geometric sensitivity factor. For smell quidrant elevation
angle QE, the backtracking trajectory is nearly rarallel to the ground as it
nears the launch point. A small vertical error is megnified by the cosecant of
the angle QE. The values of the errcr in X, in Table 2, multiplied by sin(QE)
give values thet cluster together much better than the velues of the error as
given in the Table. This is iliustrated in Table 3, showing th2 ratio of LT’
the normal distence of trejectory computed by the simplified dynamics from the
true trajectory at the launch point, to 2x, the longitudinal error in launch

point due to the simplified dynamics approximations.

At 10 second reversal time, the largest value of (error in X)(sin QE) is
4.7 meters, for the 155mm shell at QE = 216 mils. At 20 second reversal time
the largest value is 25.0 meters, for the same trajectory. If the 155mm shells
are excluded, the largest error products are 2.5 and 15.6 meters respectively
at 10 and 20 second reversel time, both for 105mm shells.

The sensitivity to projectile type suggests that the aerod mamic drag func-
tion fit could be tailored better to apportion the errors over the different
projectiles, so that the 155mm and perhaps the 105mm errors would be decreased
at the expense of the 175mm and 8-inch errors. For the latter iwo projectiles,
the largest values of (error in X){(sin QE) were 2.1 meters at 10 sec. reversal

time and 12.5 meters at 20 sec. reversal time, both for the 175mm sheli at
QE = 2uk.

For all the cases studied, the importance of backtracking zrom & smoothed
state vector as soon &s possible is apparent. The drag approximation leads to
unacceptably la~ge errors for reversal times much in excess of ten seconds.
This points out the importance of the "smoothing" as opposed to "filtering"
features of the recursive algorithm being developed.
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3.0 DEVELOPMENT OF ESTIMATION ALGORITHMS

3.1 Introduction. This section will be devoted to the development of the non~-
linear filter-smoothing algorithm presented in the second quarterly repcrt.*'l'he
derivation is based on & gaussian approximation to optimai conditional mean es-
timation and follows similar developments described by Wishner et.al. [7] for

= extended Kalman filtering. The filtering equations are a modification of their
. results; the smoothing equations are new. An Euler-type integration scheme is

. : agsumed for the system dynamics.

t

mm-.mmm&mm:mk‘niwmimﬁwmmm:a&u‘.mm&ﬁzM&mfé&mmm.*a».-amw_azmmuimmmmwwmm ¥ "mm;fmmzmmummmmmma

SN
LR IR N ;{ﬂ{! ‘EST: -

= 3 3.2 Problem statement. Consider the problem of deternining sequential estimates
: of the n-dimensial state vector x, = xt of & dynamic system given corrupted dis-

J

crete m-dimensional observations (or megsurements)

TR F gL

z, = h(xk) + v (1)

LTS L

Ty

The h(-) is an m-vector nonlinear function of the state, and the set {vk,k:i,.--}
is a white gaussian sequence with r X r covariance matrix

TRV o T e

T
= =R
= E{Vk’ Vit = Bk @)
. The evoluticn of the state vector is described by the vector (It3) stochastic
x E differential equation
ks )
= ’ where f(-,t) is an n-vector, g(-,t) is n X r, and B, is an r-vector Brownian
motion process with
§ (A
g E{dp,,d8,) = @ dt (4)
k 3 The initiel state is assumed to be a vector of gaussian random variables with
mean x  8nd covariance matrix cov(x ,x iz_).
3 o oo
; 3 3.3 Gaussian approximation for conditional mean estimation. The criterion for
= E optimel estimation will be the minimization of the conditional expectation of
‘ 3 the quadratic form.

-
Ref. 2, Section 4.0.
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‘;ﬁfk sJ‘Eslk where Sj is an arbitrary positive definite weighting matrix. The
vector'g%lk = xJ - §j|k denotes the error made in estimating the state x with
§J|k an estimate bused on the given reaslization of observations
T T,7
)

T
Zk= (zl 22 ees oo zk (5)

The estimate that minimizes this criterion is known [h] to be equal to the
expectation of xj conditioned on Zk

lek = Ellezk} . (6)

This estimate is commonly described as the minimum verience or minimum mean-
sguare error estimate.

uUnfortunately E{lezk} cannot be determined exactly for the general non-

linear problem. This is a consequence of the fact that en infianite number of
terms is required to completely charecterize the conditional probebility
density function p(lezk) {4]. If however it can be shown that the x, and 2,

are vectors of gaussian random verisbles, the density function can be fully
described by the following expressions for the conditional mean and euto co-
variance matrix:

E{lezk] = E{lezk_I} - cov(xj,zklZk_l)cov(zk,zklzk_l)(zk - E{zklzk_ll)( |
f

cov(xj,lezk) = cov(xj,lezk_l) - cov(xj,zk|zk_l)cov'l(zk,zkIZk_l)cov(zk,xJ|Zk_l)

(8)

where

cov(xafxﬁlzy) = E[(xa - E{xalzv})(xB - E{xslzyi)‘zv} (9)

We are motivated by the relative simplicity of equations 7 and 8 to assume
that for x, geaussian, xj will be at least nearly gaussisn. Sorenson and
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i § Stubberud Lh] explored this idea rather thoroughly by a@ssuming the a posteriori %
2 4 density function to be expanded in an Edgeworth series z
; E é
F - p(x.12,) = o(x. 12 )1 + 2 el (x,]2.) + i ol (x.]2 )+ ..] (10) g
312 31 %% 37 C3txyiZy ) + v o, (412, 3
i 3 where w(-) is the conditional gaussian density function and the Ha(o) are hermite g
Z polynomials. 1Their experience with filtering algorithms would ndicate that the %
e inclusion of the higher order terms in equation 10 is often onl- of marginal value z
: and is computationslly impractical for all bu% scalar end simple second-order systems. 3
3 Other authors [e.g.3,5 1 nave investigated different expansions for p(lezk) with §
; similar results. Since our desire is to develop a filter-smoothing slgorithm %
3 1 that may be realistically implemented for & system relatively high order, we are E
e by practicality constrained to the assumption that equation 10 1nay be truncated §
E g after the first term, i.e. that the xj ana Zk are jointly gauss..an. 7he experi- b
f § ence of other authors [summerized in reference 8] with the reeniry vehicle track- §
k- ing problem would indicate that this is a reasonable assumption. Thus recalling %
3 § equation 6 we have for the evolution of the optimal estimate duc to the observa- %
3 g tion of zk. 3
& : §
E 3, = % ! -1 v -3 :
z ; lek = xj‘k-l + cov(xj,zk,zk_l)cov (zk,zklzk_l)(..k zklk«l) (11) §
: and

E .

§ cox(xj,lezk) = cov(xj,lezk_l) - cov(xj,zklhk_l)cov (zk,zklzk_l)cov(zk,xjIZk.l)

f (12)

3 : where now

'—,- | = iy T ’

4 cov(xj,xklzk) = E‘lek xk]k‘zk (13)

: 3.4 Taylor series aporoximations for estimatc updating. Approximations to the

W

elenent terms in ¢quation 1z and 12 are sutained Ly expeuding the varisus ion-
linear vector functions in & Taylor series about some nominal trajectory state.
A 1cgical choice for this nominal state wou%g be the current best estimates of
X, - Expanding h(+) to first order terms in xk]k-l we obtain for the measurement

] Nl g,
g .\d»‘wt ibie g2

2 = D) + B Ky + Y (k)
=
; -11-

S U A b b b b il ! b gl =0 ™ ;
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and thus taking expectations

ik!k—l = h(iklk-l) . (35) 3

TN m%‘mfm&m&?m«m Sortntigrsad

uk is defined as the m X n Jacobian mstrix of h(-) with element:

dh (y)

l
H:jczz,ﬁt —5—_ <=3 (26) :
“e]k-1 3
The approximate measurement residual zk‘ _1 ey now be determined by sub-
tracting equation 16 from ik, e

Zelk-1 = ke Mol T Yk amn 3

5 Subsitituting the above expression into the defining term for the measurement 3
3 conditional covariance 3
z

SUCENLARES 2 CHNING S NI (18) 3
we deduce after some manipulatior that '~
v - ( T 3
cov(z, sz, |7, 1) = Heeovix,x |z ) + R (29)
, The following first-order &pproximetion to the cross-covariance matrix E
E ’ cov(xi,zklzk_l) is determined similarly from equition 17 A
. o - n =

cov(>.j ,zklz.k_l) = cov(xj ,xklzk-l)}i (20) 3

If in equation 20 j equals ¥, i.e. only the filtering problem is being con- 7

sidered, then equations 19 and 20 would be su’ficient and the development of the

estimate uvpdate equations would bte complete. That is, substituting equetions 15, 4

19, and 20 for terms in 11 and 12 one obtains for the filter &

-12- _




D Al A e e ik T
Bl = Fefie-r cov (% 2, ) )8 (21)

N where we denote the innovation
: T = 2y - Blgpy) (22)
and
<] b .
- | cov(x,x, 2,) = covlx,x |z LT - S.H cov(x ,x |2, )] (23)
-

¢ with
E |
E _ T T -1

S = Bl eovlnoxlz, )i + &) (k)

%
b= i It may be noted the although equivalent to Wishner's | 7] equations these ex-
E pressions are formuleated somewhet differently. The reason will become clear
. when we determine the equations for smoothing.
g In order to implement fixed-point smocthing an expression equivalent to
2 equation 19 is needed for updating the cross-ccveriance matrix cov(xj ’xklzk)'

; Such &n expression may be deduced from the following lemma:

)
-

spnbigs KA

lemma I. If Uy Uy and u3 are vectors of jointly gaussian random variables, then

cov(ul,u2|u3) = cov(ul,ua) - ccv(ul,u3)cov°l(u3_.u3)cov(u3,\12) (25)

AR A E Lo

AT TR T

A proof of Iemme 1 is included in Section 3 below.

By identifying x_, xk, and zk with u ua, and u_ respectively in equation

L :
e )
A i h syt

1’ 3
25 and recalling that 2, = (Z:_l, sz)T, one sees that
R ) -1
E | cov(xj,xklzk) = cov(xj,xk]zk_l) cov(xj,zklzk’l)cov (zk’zk|zk-1)c°v(zk’xklzk-l)
EE

-13-
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Taken together equations 19, 20, and 26 describe the necessary relationships for T
updating the cross-covariance terms cov(xj,xklzk) and cov(xk,xdizk)(=cov(xj,xklzk) ).

Making the appropriate substitutions we determine

R g B U LSt

covix;,x 12, ) = covlx x|z )T - s.H covix, x|z, )] (27)

i
Y et aanst i

We shall use equation 27 along with the expression

X1k = ij]k»l + cov(xj,xklzk_l)skﬂk (28)

to define the nonlinear fixed-point smoothing estimate updating. The smoothing
: is initiated by the filtered estimates X413 and cov(xd,lezd), or if j = 0, then

; obviously by io and cov(x ,x ). It should be noted that with the above farmuls-

' tion, fixed-poin: smoothing introduces no additional matrix inversion operations
: to the estimatior algorithm.

PR AT ST 11 R
ST R A e, e
-

Assuming the neccssary extrapolation equations describing the evolution of
{ the estimates between samples are available, the algorithm is complete even

£ though no expression has been determined for the augo-covariance cov(x,,x lzk)°
We include such an expression for completeness; 373

MR IR N
-

a3

cov(xj,x3|zk) = cov(xj,lezk_l) - cov(xj,xklzk_l)skﬂkcovT(xJ,xklzk_l) (29)

The development of the dynamic equations for the various estimates and asso-
ciated covariance matrices between sanple: will now be considered.

i
g 3.5 Estimate extrapolation. Recall that the evolution of the system state vector
¢ is assumed to be described by the expression

i

{

: dx, = f(xt,t)dt + g(xt,t}dﬁt (3)

x Proceeding as before, we expand f(x,,t)(for t, S t <t} in 8 first-order Taylor

series about the estimate xtlk-l ?

| dx, = Lf(xtlk_l,t) +F, xtlk_l]dt + g(xt,t)dat t, ., StEt (30)

& -1k~
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where

i bfa(xt,t)

lr] = 5= . (31)
“ap B %, = t]k-1

In light of our discussion on minimum variance estimators and equation 6, we
determine the following dynamic equations for the suboptimal estimate

d X k-1 = f(xtlk_l,t)dt (32)
and estimate error between measurement samples

A xtlk-l =F, xt‘k-l dat + g(xt,t)dﬁt (33)

In order to facilitate on-line estimation, the dynemic equations will be
discretized by simple Euler numerical integration. Integrating equations 32

and 33, we hav: for b, = tk-l + ot
Belee1 = Feafier * 08 Tl g o b1 (34)
and
;klk-l =lr+v k-lAt];k-llk-l + 80 oty g Wy (35)

where the v are defined to be elements of a white gaussian sequence with

*

T .

In orde. to simplify the notation, we shall define the following terms

*Although treating the noise process in this manner is gertainly an sbuse of the
theory of stochastic differential equations (see ref {4], chapter 4 for example),
it will suffice in our context of the estimation problem.

-15-
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P = I¥OEF (37)
Q1= 8 Q) (38)

Substituting equation 37 into 35 we have
;klk-l = %k ;k-llk-l + 0o 1ot e (39)

Errors introduced into the estimate extrapolation by discretizing equation 33
may be reduced somewhat by including second order terms (in 4t) in the expansion,

i.e.

2

. . . ot .
Bek-1 = Feaf-1 * 8 T 1ot Y LA PRTL Y (o)

Since the inclusion of the additional factor does not require that we determine
any additional matrix terms [Fk-l must be computed anywayl, ircreased accuracy

may be obtained at little computational cost. As a consequence, equation 40O
will be employed in preference to equation 34 for estimate extrapolation.

Apnroximate equations for cov(xk,:%lzk-l) and cov(x ’xklzk-l) may be deter-
mineG by substituting equation 39 into the appropriate 3efining expression. Thus
for

covl(o% |2, 1) = Bl ) ;rklkol‘zk-l} (1)

we have

cov(x,x 1z, 1) = EIL ¥y Ty + 800 1oty Wy
(W2)

T
~ T -
(e, k-1 * 8%, 3o% 1 M 13 12y

which reduces to

-16-
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cov(n %, 12, 1) = ¢ °°"("1«-1”‘.k-1lZk-l)"‘T k-1 ¥

ARG

S TR
R mmm‘ll!ﬂF@WW"‘mM“ ]

‘ ot (43)
Elalx, sty 109y & (5 10t )12 )
. . .
; Further reductions are not possible without expanding g(xk l’tk l)Q'k 18 (xk 12
t’k 1 ) sbout the ﬁ: l]k 3 nominal trajectory. Proceeding with the Taylor series
expansion, we determine to first order in xk l!k-—l that
E _ T s g A
3 covix,x 12, 1) = &, jeovix yox 17 )80 g 8% 1 |k-17%-17%-1 ;
: - () :
: LR T 2
i The expression for the cross covarisnce term is determined in a similar manner El
cov(x, 4 |7 1) = Bl 5l 00y Reajer * 8(x 1ot 3 M1} (43) E
. §
* = COV(XJ ’xk.llzk'l)é k‘k-l (,‘6) %
57 %3‘:
5 We summarize our development by collecting the various results intoc the §
4 following theorem. %
Theorem I. The first-order filter-smoother for the discretized nonlinear 3
E system described herein consists of the following extrapolation equations be- -
tween samples Z
, E
. - _a + 0t £(3 e )+ Ata £(% ) (40) f‘g
Xelee1 = Xx-1fk-1 ¥ °F (e ie-1%-1) + 7 Fee1 T Meea|k-17%2 3
_ Ly ' 2
cov(xk’xklzk-l) = ’k.lmV(xk_l)xk.lle_l)Q + S(J‘k llk-l’ k- I)Qk 1 §
S T,a (k) |
& (K1 )k-17%-1)
-4
: - 5T
. cov(xd,ﬁlzk_l)- cov(xj,xk-llzk_l)I 1 (u6)

-17-
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and the following updete equations at the samples

~

ek = Skf-1 covlxeox |2, )8, 5

A MRCTRETREY

;‘Jlk = i:]lk-l + cw(xj’xklzk-l)sk"k

cov(x,p% |2,) = covlx,x |z, )T - s covix x 1z, )]

Ve, PATHINERNVENE MOPETES

cov(xyxelz) = cov(xpxlz, )T - s covlxx iz, )]

where

=3
w
Hi

" h(iklk-l)

: and

v,
tn
L1}

x = B (eovlnon |z RS 4 m)™

e
2
%A
=

.

Lo

T T e

oy ; ke T LA S DAY "
Y SN E ity W TR L e

f -18-

S,
£

DY

ity (N
ﬂb-

© LRI
by

3 A

R R R R B  ad G R e R T B e

(21)

(28)

(23)

(271)

(22)

(24)

b
-

o
‘fmimm‘-a&.X'iaiﬂf.’m.'h‘.*:ﬁﬁﬁiwmmumiz‘fs&%mﬂ?&ﬁ‘.&ﬁmm

m»*ummﬁ{mm



e SRR AN RTTERI R A e R R S R A R IR e S R R e T e S R R T O L M S e
3

AP Rt 910wt s 7

3.6 Proof of lemma I

Define the augmented vector

!

and sutstitute it into the following augmented covariance matrices

a s - cov(ul,ul) :CO\'(“]_,UE)'_
cov(U0) = B {55, (%) = | Gifugu) T eov (i) (:8)

Rt ¥OURAD
SRR

y N cov(u, ,u,)-
cov(U,ua) = EJLK;;)%TJ = [ cov(:al,:;).] (49)

i M:“,"‘\' :JP x i A s

i

cov(u3,U) = B{u3(u1T:' uar)} = [cov(u3:“1)§cov(“3:“2)] (50)

These expressions may now be substituted into the equation for the conditional
covarisnce cov(v,ulu3),

cov(U,UIuS) = ‘cov(U,U) - cov(U,n3)cov°l(u3,u3)cov(u3,U) (51)

Performing the indicated matrix operations we obtain

rorlle ety ply),  reovlage) - corteyu)eoHeu oortiy ) § vty ) - eorleyup)eor” Jelegrigly

3 S U R TR G ol i e CW e T S R g e ot R et PR ety 1% i
| (52)
The off-diagonal term is recognized as the desired result.
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4.0 DETERMINISTIC COMPUTATIONS FOR EVALUATING FILTER-SMCOTHER PERFORMANCE

LRI LSO T, KL B ]

4 4,1 Purpose. The conventionul way to evaluate a RATRAN signal-processing filter

= 1 is by a program of Monte Carlo computation, as described in the next paragraph.

3 3 This memo outlines a8 deterministic method for the same purpose. The deterministic
z 3 method requires more programming. It gives in return cetter insight into the mean-
: ing of the results and freedom from sampling variances.

These results are directly applicable to evaluation of recursive filter-smoother
algorithms such as the one developed in Section 3 above. While expressions are in-
cluded in the sbove work for estimate covariances, such expressions are limited to
the specific conditions required for the optimalization. The formalization presented
here enables computing the effects of radar bias errors, and also errors due to other
system and environmental deviations from conditions assumed in the optimalization.

R

ST ED A

B A AR VA DA AN NS s b AR S

4.2 conventional method. In the conventional method, for which the programming is
in progress, & trajectory is selected and & number of state vectors

xk = x(tk) K = l,...,n (53)

SRR SR 4

are computed. The noisefree radar observation vectors

: r, = h(xk) k= 1,...,n (54)

ordly N AR R R el s

3 ; are also computed. These are used repeatedly with different samples of radar noise
2 vectors Vier and possibly a radar bias vector b(xk), giving

z, = h(xk) + b(xk) + v (55)

k> % for the radar observation vectors. The z's are used as inputs to the filter eque-

tions, which compute the estimated state vectors ik and “he errors in the estimated
state vectors

A L
AR

N g,
SO

For a2 number of samples of rsdar noise, the mean of the observed errors in (56) is
|  taken to be the bias £(6x) of the filter in the estimate of x(tk). The coverignce

of the error is taken to be the mean of (6x - B(6x)(6x - ﬁ(éx))T, for the noise
samples used.
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£ 4.3 Outline of deterministic method. The deterministic method, outlined nex%,
3 does not use radar noise samples. Instead it uses the mean and the covariance
E: of the radar noise. The deterministic computations follow the propagations of
& the means and covariances through the filter, instead of the actusl errors &s in
= the Monte Carlo computations.
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Iet

X, = 20 _yo% ) (57)

be the true transition function, where as before X, is the state vector at time
tk and now v is a parameter vector. The components of v are those scalar para-

neters whese effects on the trajectory are of interest: wind velocity components,
air density, etc. (In the conventional or Monte Carlo computations, it is conven-
ient to separate the bias errors from the random errors; in the deterministic
method it is convenient to discuss them, and even to compute their effects, con-

currently. ) .
The filter, in its prediction step, computes, using an estimated parameter
vector W,

Helk-1 = 8%, 3%, ) (58)

where g(+,-) differs from f{-,-) in RATRAN because of the use of the simplified-
dynamics equations in the filter, and also because of truncation errors in the

fiiter computations. Iet
?(x,w) = g(x,w) - £(x,w) (59)

by definition, for any (x,w).
The filter then computes

R = Rypeen * Aley - Bl ,)) (60)

where Ak is the Kalman gain matrix, here assumed to be precomputed -- i.e., to
be & function of x rather then of ik

Iet H_be the matrix with element bhi(xk)/bx(j) in row i and column j, vhere
hi(~) is the ith element of the radar coordinste vector T and x(J) is the jth

element of the state vector x(tk) » 80 that

B(Xgpyoy) =Blx) + B O0xy (61)

<2l
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where

8% k-1 = X1 ™ %k (62)

is the error in the prediction step of the filter. Then (55), (60), and (61) give,

approximately,

6xk = %(b(xk) + vk) + (1 - Akﬂk)axklk-l (63)

The computation(%8) may be written

O |-z = 8(Ry_yo¥y 1) - 009, )

8%y _qo% ) = &l 3w y) +9(x 10 )

Then

Pg1 * Gl(sﬁ bxq * G,(:i bwy1 (64)

8%y k-1

where Gl(:]). is the matrix that has in row i, column j the partial derivative of

the ith onent of g(x,w) with respect to the jth component of x, evaluated at
t 15 ag_' is similarly defined except that the partial derivatives are with re-

spect to the components of w; and

Pr1 = Pl _y5¥, 1)

SWi1 = W1 ~ Vo1

Substitution of (64) into (63) gives

by = A (b)) +v) + (T - AR @, ) + 51(:‘3 bwyy)

+ (1 - ARIQT bx (6)

" " - 1y Bk by
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Equation (65)hold equally well for the Monte Carlo computations as for what
follows below. 1In the deterministic computations » equation (65) is not used, but

instead the equation that follows from taking the expected value of both sides is
used:

B(6x,) = Ablx) + (1 - ABI®, ) + o) ow )

+ (1 - A% Bex, ) (66)
In (66), it has been assumed that W is deterministic and that Bv. = 0. Tt would

k
be easy, but I believe not useful in RATRAN, to let ¥ have random components.

Each symbol in (66) except E(6xk) and E(6xk-l) represents & quantity 4hat is

known before the error computations begin. Therefore (66) may be used, given an

input value for the mean initial error vector E(6x°) » to compute the mean error
in each ik

If we write

Ve = A®G) +v) + (-am)e,  +d e ) (en)

for the forcing term in (65) and
= (1 - An)d)
C A )G (68)
for the loop gain, so that (65) becomes

bx =¥ +Cp Sxp (69)

it follows that
cov(bx,,0x, ) = covly,,¥, ) +C cOV(ka_l,éxk.l)Ci"

+ coV(yk,ka-l)cg +C, cov(bx ..y, ) (70)

If all the terms in (67) sre deterministic except for v , and if Ev_ = O,

Yk k
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cov(yk,yk) = A cov(vk,vk)Az (71)

E
5
g

#3

and if further the Vi1 are uncorrelated for different values of k, it follows
that

L SpR s

cov(y,,6x, ;) = cov(bx, .,y,) =0

Lt

Then (70) becomes

RN mwmmmm»mmmmm&kww-mw:«.m*

{3k it

cov(5xk,5xk) = Ak cov(vk,vk)A;E +C cov(éxk_l,éxk_l)cz (72)

Equaticns (66) and (72) give the desired results.

Equation (66) gives also the effects of radar bias and other bias errors;
small bias errors of course have no effect on covariances.

AL R SR D g T

B LA AR R 208 M D

A U S A0 RN, Y AR N TV YR DB T H M A s LRl DAl A e A B B et 2

For smoothing instead of filtering, sn equation similar to(60), but using
= a different matrix in place of 1\( » leads through identical steps to equations

similar to (66) and (72).

it

L.k Explicit role of input errors. Equations (66) and (72), being recursive,
do not reveal to casual inspection how each input error affects the state vector
estimate. For additional insight, and under some conditions for an economy in

: computation at the cost of some programing effort and some storage space, there
E méy be value in using instead (73 ) and (75) below.

=
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i

4 Equation (66) implies
B(ka) =¥ +C¥ 3 * Ol 1Yo Yot ckck-l"'cayl

+ CCy_y---CoCyE(6x) (73)

T e,
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5
8
(4]

Yy = Adlq) + (1 - ARI@ , + ng_ Y (4)

Equation (73) shows the contribution of the initial error imput to the Kelman
filter, and the effects of the contributions from each radar look.
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Simiiarly equation (72) implies

T T T
COV(sxk’aﬁ) = Rk k lck tooot ckc looocaal 2.ooc
+ ckck 10.00 COV(5X ,62( )c oo e E (7‘)’)
where
' T
Rj = A:j COV(VJ,VJ)AJ » J=1’ooo,ko (76)
L.5 Effects on launch-point estimation. ILet x, be the state vector just after
the launch. I1f x, is perturbed by a small vector Gxi, the effect on X, = x(tk)
is a change -
5xk = U; 6xi (17)
where ui is a square matrix of partial derivatives, with the partial derivative

k
of the rth component of X, with respect to the sth component of x in row r,
column s. Then 1

E(6x,) = Uy B(6x,) (78)
and

T
cov(éxk,&ﬁ‘) = UJ' cov(6x ,5Xi)(u';) (79)

The elements of u; are being computed and stored, for a number of trajectories

and a number of values of k, for another purpose. From these elements there will
be computed the inverse matrices

I
U:=(U;) ’

for use in

E(éxi) = Uli‘ B(&xk) ' (80)
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T
cov(bx, 6%, ) = uf cov(ox, 8%, ) (UF) (81)

Finally, the mean error in estimated launch point, and its covariance, will
be computed from

E 6:L = LE(Gxi) (82)

and

GxL ﬁxL

; T
cov {ts. " o log =Lcov(6xi,6xi)L (83)

‘ where
3 :
{ -x /¥y 0O 0 0 0o O O

(o]

L= ° (8"")

o-zolyolooooo

s

;, § adjusts for the time when the estimated altitude is zero, instead of 5, when the
estimated time-of-flight is zero. In (84), io’s'o’ and io are the downrange, up-
E ward, and lateral components of launch velocity.
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9.0 CONCLUSIONS

The results of Section 2 show the performance of the simplified dynamics
approximations to a variety of trajectories computed by the BRI point-mass
model. In general it is seen that the approximations provide reasonably accur-
ate computation of launch parameters provided thet the time from which back-
tracking is initiated is sufficiently early. Error variations are due chiefly
to differences between the projectiles and to geometric dependence on gquadrant
elevation angle.

Section 3 demonstrates the mathematical validity of the optimal smoothing-
filtering algorithm presented in the 2nd Quearterly Progress Report.

Section 4 presents a method for deterministic evaluation of recursive
{ilter-smoother algorithms, accounting for bias and modelling errors as well
as random nvise-like observation errors. This procedure can avoid the need
for extensive simulation runs for filter-smoother evaluation.

The remaining work planned in the next few months o7 this effort will be
mainly concerned with the application of computer programs and techniques des-
cribed in this and previous Quarterly Progress Reports. Specific resuits will
include:

(2) Minimum variances of trajectory parameter estimation errors caused by
errors in radar observations (a8ssuming true optimum processing). Sensitivity
of results to radar-target geometry and radar system parameters such as track
time, data rate, and S/N will be indicated as well as an assessment of the
utility of doppler measurement for range-rate.

(b) Simulations of optimal filter-smoother algorithm performance for a
variety of radar-target geometries. Evaluations cf performénce will be pre-
sented. Comparisons will be made with true optimum (see (a) above) and sensi-
tivities will be determined with respect to bias and modelling errors. While
some Monte-Carlo simulation runs will be performed, most of the evaluations
will be based on the deterministic evaluation technique described in Section &
above.

(c) Complete descriptions and listings of the computer algorithms and pro-
grams plus a guide to their use and an evaluation of their possible utility in
an operationsl system.
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